Dispersive estimates of solutions to the Schrödinger equation in dimensions n≥4
نویسنده
چکیده
We prove dispersive estimates for solutions to the Schrödinger equation with a real-valued potential V ∈ L∞(R), n ≥ 4, satisfying V (x) = O(〈x〉−(n+2)/2−ǫ), ǫ > 0.
منابع مشابه
A Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions
In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class C, α < n−3 2 , for which the solutions to the linear Schrödinger equation in R, −i∂tu = −∆u+ V u, u(0) = f, do not obey the usual L → L∞ dispersive estimate. This contrasts with known results in dimensions n ≤ 3, where a pointwise decay condition on V is generally sufficient to imply dispe...
متن کاملDispersive estimates for the Schrödinger equation in dimensions four and five
We prove optimal (that is, without loss of derivatives) dispersive estimates for the Schrödinger group e ) for a class of real-valued potentials V ∈ Ck(R), V (x) = O(〈x〉), where n = 4, 5, k > (n− 3)/2, δ > 3 if n = 4 and δ > 5 if n = 5.
متن کاملF eb 2 00 6 Dispersive estimates of solutions to the wave equation with a potential in dimensions n ≥ 4
We prove dispersive estimates for solutions to the wave equation with a real-valued potential V ∈ L∞(R), n ≥ 4, satisfying V (x) = O(〈x〉−(n+1)/2−ǫ), ǫ > 0.
متن کاملDispersive Estimates for the Schrödinger Equation for C
We investigate L → L∞ dispersive estimates for the Schrödinger equation iut − ∆u + V u = 0 in odd dimensions greater than three. We obtain dispersive estimates under the optimal smoothness condition for the potential, V ∈ C(n−3)/2(Rn), in dimensions five and seven. We also describe a method to extend this result to arbitrary odd dimensions.
متن کاملHigh frequency dispersive estimates for the Schrödinger equation in high dimensions
We prove optimal dispersive estimates at high frequency for the Schrödinger group for a class of real-valued potentials V (x) = O(〈x〉−δ), δ > n−1, and V ∈ Ck(R), k > kn, where n ≥ 4 and n−3 2 ≤ kn < n 2 . We also give a sufficient condition in terms of L 1 → L∞ bounds for the formal iterations of Duhamel’s formula, which might be satisfied for potentials of less regularity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asymptotic Analysis
دوره 49 شماره
صفحات -
تاریخ انتشار 2006